对于以电子工程为模式的生物技术,生物组件是它的基础。
撰文 生物工厂研究小组*(Bio Fab Group)
虽然“基因工程”这个词已至少用了30年,DNA重组技术也是现代生物学研究的主流技术,但是大多数生物工程学家所进行的生物相关研究,却与工程技术鲜有共同之处。其中一个原因就是,现有的生物工具,在标准化和实用性方面还没有达到与其他工程技术领域相应的水平;而另一个原因,则是生物学的研究方法和思路还有待改进,尽管生物学研究已经深受工业技术的影响。
举例来说,电子工程的转型起始于1957年。那一年,美国Fairchild半导体公司(这家公司的所在地就是后来的硅谷)的琼·霍尔尼(Jean Hoerni)和罗伯特·N·诺伊斯(Robert N.Noyce)发明了平面技术。这是一种利用光掩模(photomask),在硅晶圆(silicon wafer)内,对金属及化学物质进行层叠和刻蚀的系统。利用这种新技术,工程师们不仅能够制造出品质稳定的、简洁的集成电路,还能通过改变光掩模的模式,制造出各种类型的电路。此后不久,工程师们就可以对前人所设计的简单电路进行选择组合,设计出更加复杂、应用范围更广的电路。
在那个年代,电子电路的标准制造方法还比较原始,只是将电路的各个晶体管(transistor)逐一串连起来。这是一种手工制造过程,其产品质量参差不齐,被新兴电子工业界公认为技术瓶颈。相反,平面技术则大步前进,进展速度惊人,与著名的摩尔定律(Moore’s Law)所提出的速度相差无几。
半导体芯片的设计制造技术与方法学相结合的产物—— 芯片制造厂(chip fab),已成为史上最成功的工程范例之一。它也为另一新兴技术领域—— 生物体系制造业,提供了宝贵的发展模式。
实际上,今天的基因工程师所使用的方法,仍处于较原始的阶段。正如我们的同事,美国麻省理工学院人工智能实验室的汤姆·奈特(Tom Knight)所说的那样:“DNA序列的组装技术没有标准化,致使每一次DNA组装反应在自身还处于实验阶段的同时,就不得不充当解决目前研究课题的实验工具。”
生物工程在制造方法和组件上的标准化,可以促使兼容组件设计库建立,并使组件的加工外包成为可能。理论与制造的分离,使生物工程师能够自由地构想更加复杂的装置,并应用强大的工程工具(例如计算机辅助设计),来处理由此而来的复杂性。向着这些目标,我们小组的成员已经开始寻找和开发能够构成“生物工厂”(bio fab)基础的仪器和工艺技术。我们还想组建一个团队,然后借团队的力量,将最好的工程原理和实践应用于生物技术。
合成DNA
如果说单个的晶体管是电子电路的基本组件,那么在生物学中,与之对应的便是基因(有序的DNA片段)。为了给高级的生物装置构建基因电路(genetic circuit),我们就需要一种快速可靠、价格合理的DNA片段合成法。
20年前,在前人的工作基础上,美国科罗拉多大学博尔德分校(University of Colorado at Boulder)的马文·H·卡拉瑟斯(Marvin H.Caruthers),利用DNA自身的化学性质,研发出一种单链DNA合成法。DNA由4种核苷酸组成,而每种核苷酸又含有一个相应的碱基,分别是腺嘌呤(adenine,A)、胞嘧啶(cytosine,C)、鸟嘌呤(guanine,G)和胸腺嘧啶(thymine,T)。碱基之间的亲和力使它们两两配对(A-T配对,G-C配对),形成梯状双链DNA分子中的梯级。化学键不仅在碱基对之间形成,在邻近的核苷酸之间也会形成。
卡拉瑟斯所使用的方法被称为固相亚磷酰胺法,这是目前大多数商业DNA合成法的基础。合成反应起始于一个单核苷酸,这可不是一个普通的核苷酸,它附着在悬浮于酸性液体中的固相支持物(如聚苯乙烯颗粒)上,并承担着发起合成反应的重任。当碰见“新来”的核苷酸,两者便会通过形成化学键相连。如果不断加入核苷酸,反应就会持续进行,核苷酸链就会不断延长。这样,就可以合成任何想要的核苷酸序列,并且不易出错(出错几率约为1%)。
但很多时候,生物工程师想要的基因片段,远远超出了该方法的合成能力。一个简单的基因网络也许就有数千碱基对;就算像细菌这样的微小生物,基因组也可达数百万碱基对。因而,我们如果想找到高产出、低误差的合成法,就只能寄希望于从自然界中获得一些提示了。
在生物体中,像酶(如聚合酶)这样的生物机器,能以高达每秒500个碱基的速度,合成和修复DNA分子,而错误率仅为十亿分之一!这就意味着,即便是最好的DNA合成机器(每300秒合成1个碱基),产出率(输出量/错误率)也不及聚合酶的万亿分之一。更有甚者,在细菌体内,当复制像基因组那样的长链DNA时,多个聚合酶会同时运作,在20分钟内就能合成含有500万个碱基的DNA!
于是,丘奇开始仿效细菌聚合酶的这种平行作业方式,以适应现有的基因芯片技术。基因芯片其实就是特殊的玻璃片,在它的表面上,繁星般地点缀着长为50~70个碱基的寡核苷酸(oligonucleotide/oligo,短小的核苷酸链)。通过亚磷酰胺反应法,寡核苷酸被同时合成于基因芯片的表面,并以格状排列,密度高达100万点/平方厘米。在传统技术的基础上,我们又在这些寡核苷酸上加上可剪切的连接子,以便特定的寡核苷酸能够从基因芯片上释放出来。在我们的实验性基因芯片上,每个点约为30微米宽,含有大约1000万个寡核苷酸分子。
通常,基因芯片上的核苷酸链被称为构建性寡核苷酸(construction oligo),因为它们的部分序列是相互重叠的,通过重叠的序列,可将它们组装成更长的DNA结构(如整个基因)。但是,任何含有错误序列的寡核苷酸都必须被清除。为此,我们采用了两种不同的纠错方法。
第一种是选择性寡核苷酸(selection oligo)法。合成选择性寡核苷酸的方法与制造基因芯片的方法相同,只是在核苷酸序列上,前者有特殊的要求:与构建性寡核苷酸的序列互补。合成之后,便对连接子进行剪切,从玻璃片上释放选择性寡核苷酸,并使它们流过构建性寡核苷酸的芯片。按照碱基配对的原则,选择性寡核苷酸就会与互补的构建性寡核苷酸结合(杂交,hybridize),形成双链DNA。这样,任何不能配对,或者含有错误序列、配对不完全的构建性寡核苷酸,都无法逃过我们的“法眼”,也就无法继续在芯片上“滥竽充数”。与制造基因芯片一样,在合成时,选择性寡核苷酸的序列也会出错。但是,构建性与选择性寡核苷酸的错误序列很难完全互补。因此,利用一组寡核苷酸对另一组进行校对是一种有效的纠错方法。利用这种方法,我们合成寡核苷酸的平均错误率可以低至1/1,300。
正如人们所料,生物体系非常注重自身复制的精确度。我们的第二种纠错方法就来源于自然界。十年前,莫德里奇首先发现了生物体系复制时的详细纠错过程,并将这个过程命名为“MutS,L,H”。当两条DNA链的碱基不能完全配对时,那么在错配区,便不能形成双螺旋结构。MutS是一种天然存在的蛋白,它会识别这种缺陷,并与之结合。随后,它招集“同伴”—— MutL和MutH,共同完成修正任务。利用该方法,雅各布森与美国麻省理工学院的彼得·卡尔(Peter Carr),已经将DNA合成的错误率降到1/10,000。对于生产小型基因网络,这样的保真度足矣。
在可释放性平行合成技术和纠错技术的支持下,长链DNA的合成速度更快、成本更低、精确度更高。这些技术将是生物工厂的基础,随着时间的流逝,它们会像半导体芯片光刻技术那样,不断进步。先进的技术是宝贵的财富,能解放我们的思想,让我们思考更多:在生物工厂里,我们可以做些什么呢?
- 曝林书豪女友乃90后模特 最新性感写真曝光(图)
- 一张图晒晒福州今年发展成绩单 大家都来打打分
- 福州明年要办好六件大事:读懂全市经济工作会议
- 体坛金花今何在:郭晶晶嫁豪门 王楠丈夫买街相赠
- “最美马拉松女孩”走红 称要跑100个马拉松(图)
- 2014年世界最奇葩20张照片 8张来自中国(组图)
- 5岁超萌汉服萝莉走红 网友:最后一次叫韩寒岳父
- 盘点:1982年以来历任外交部新闻发言人都去哪了
- 劳斯莱斯婚车队被曝是纯山寨 只卖25万还能讲价
- 2014年网上最红宠物明星:小狗Boo夺魁(组图)
- 万万想不到家里辐射之王竟是它!电脑手机都不是
- 陈坤儿子生母竟是何琳 盘点各大明星的子女(图)
- 月薪过万的保姆透露卫生间收纳方法,简直绝了!
- 白开水是最好饮料!12个最能帮你击败癌症的绝招
- 谢霆锋张柏芝黄磊邓紫棋 2014年度十大综艺面孔